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Programming Abstractions
Week 4-1: Combinators and combinatory logic



An early 20th century crisis in mathematics
Russell's Paradox

Define S to be the set of all sets that are not elements of themselves


‣ 


Is S an element of S?


‣ Assume so:  by the definition of S, a contradiction


‣ Assume not:  by the definition of S, another contradiction!


This led to a hunt for a non-set-theoretic foundation for mathematics


‣ Combinatory logic (Moses Schönfinkel and rediscovered by Haskell Curry)


‣ Lambda calculous (Alonzo Church and others)


- This forms the basis for functional programming!

S = {x | x ∉ x}

S ∈ S ⟹ S ∉ S

S ∉ S ⟹ S ∈ S



Combinatory term
One of three things

A variable (from an infinite list of possible variables)


‣ I'll use lowercase, upright letters: e.g., f, g, h, x, y, z


A combinator (a function that operates on functions)


‣ One of the three primitive functions


- Identity: (I x) = x


- Constant: (K x y) = x


- Substitution: (S f g x) = (f x (g x))


‣ A new combinator C = E where E is a combinatory term, e.g.,


- J = (S K K)


- B = (S (K S) K)


(E1 E2)  An application of a combinatory term E1 to term E2


‣ Application is left-associative so (E1 E2 E3 E4) is (((E1 E2) E3) E4)



The primitive combinators

The identity combinator (I x) = x


‣ Given any combinatory term x, it returns x


The constant combinator (K x y) = x


‣ I.e., ((K x) y) = x which you can think of as (K x) returns a function that given 
any argument y returns x


The substitution combinator (S f g x) = (f x (g x))


‣ You can think of S as taking two functions f and g and some term x. f is 
applied to x which returns a function and that function is applied to the result 
of (g x)


‣ But really, f, g, and x are all just combinatory terms 



What is the result of applying the constant combinator 
in the combinatory term (K z I)

A. The variable z


B. The combinator I


C. The combinatory term (z I)


D. It's an error because I takes an argument but none is provided


E. None of the above
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‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



What is the result of applying the substitution 
combinator in the combinatory term (S (f x) h y z)

A. The variable f


B. The combinator S


C. The combinatory term ((f x) y (h y) z)


D. The combinatory term (f x (h x) y z)


E. It's an error because S takes 3 arguments but is given four
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‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Expressing S, K, and I in Racket

(define (I x)  
  x)

(define (K x)  
  (λ (y) x))

(define (S f)  
  (λ (g)  
    (λ (x)  
      ((f x) (g x)))))



Using the combinators (in Racket)

((K 25) 37) ; returns 25

; ((curry-* x) y) is just (* x y)  

(define (curry-* x)  
  (λ (y)  
    (* x y)))

(define (square x)  
  (((S curry-*) I) x))

As combinators we get (S * I x) = (* x (I x)) = (* x x)



Equivalence between Scheme and combinatory logic

We can represent combinators in Scheme as procedures with no free variables 
(i.e., every variable used in the body of the procedure is a parameter) 


There are no λs in combinatory logic so no way to make new functions


However, combinatory logic does have a way to get the same effect as λ 
expressions


‣ We won't cover this, but we can convert every expression in λ calculus into 
combinatory logic


‣ λ calculus is Turing-complete (it can perform any computation) so 
combinatory logic is as well!



Example of a new combinator
L = (S K)

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Example of a new combinator
L = (S K)

Apply the rules to the left-most combinator in each step,  
starting with (L x y)

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Example of a new combinator
L = (S K)

Apply the rules to the left-most combinator in each step,  
starting with (L x y)

(L x y) = ((S K) x y)	 	 [Definition of L]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Example of a new combinator
L = (S K)

Apply the rules to the left-most combinator in each step,  
starting with (L x y)

(L x y) = ((S K) x y)	 	 [Definition of L]
= (S K x y)	 	 	 [Constant]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Example of a new combinator
L = (S K)

Apply the rules to the left-most combinator in each step,  
starting with (L x y)

(L x y) = ((S K) x y)	 	 [Definition of L]
= (S K x y)	 	 	 [Constant]
= (K y (x y))		 	 [Substitution]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Example of a new combinator
L = (S K)

Apply the rules to the left-most combinator in each step,  
starting with (L x y)

(L x y) = ((S K) x y)	 	 [Definition of L]
= (S K x y)	 	 	 [Constant]
= (K y (x y))		 	 [Substitution]
= y	 	 	 [Constant]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Example: Diagonalizing combinator
W = (S S L)

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

(W f x) = ((S S L) f x)	 	 [Definition of W]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

(W f x) = ((S S L) f x)	 	 [Definition of W]
= (S S L f x)	 	 [Associativity]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

(W f x) = ((S S L) f x)	 	 [Definition of W]
= (S S L f x)	 	 [Associativity]
= (S f (L f) x)	 	 [Substitution]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

(W f x) = ((S S L) f x)	 	 [Definition of W]
= (S S L f x)	 	 [Associativity]
= (S f (L f) x)	 	 [Substitution]
= (f x ((L f) x))	 	 [Substitution]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

(W f x) = ((S S L) f x)	 	 [Definition of W]
= (S S L f x)	 	 [Associativity]
= (S f (L f) x)	 	 [Substitution]
= (f x ((L f) x))	 	 [Substitution]
= (f x (L f x))	 	 [Associativity]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Diagonalizing combinator
W = (S S L)

Apply the rules to the left-most combinator in each step,  
starting with (W f x)

(W f x) = ((S S L) f x)	 	 [Definition of W]
= (S S L f x)	 	 [Associativity]
= (S f (L f) x)	 	 [Substitution]
= (f x ((L f) x))	 	 [Substitution]
= (f x (L f x))	 	 [Associativity]
= (f x x)	 	 	 [Applying L]

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


‣ (L x y) = y



Example: Composition combinator
B = (S (K S) K)

(B f g x) = ((S (K S) K) f g x)		 [Definition of B]

= (S (K S) K f g x)	 	 [Associativity]

= ((K S) f (K f) g x)	 	 [Substitution]

= (K S f (K f) g x)	 	 [Associativity]

= (S (K f) g x)	 	 [Constant]

= ((K f) x (g x))	 	 [Substitution]

= (K f x (g x))	 	 [Associativity]

= (f (g x))	 	 	 [Constant]


‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



Work out what J = (S K K) does in (J x)

Apply the rules of the left most combinator in each step, 
starting with (J x)


‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))



I is unnecessary

Since (S K K x) is always x, (S K K) and I are functionally 

equivalent 

We can replace I in any combinatory term with (S K K)


Since we can model all computation using S, K, and I and I can be built from S 
and K, S and K are sufficient for any computation!


Unlambda is a programming language built out of S, K, function application, and 
functions for printing and reading a character


‣ Hello world! in Unlambda: `````````````.H.e.l.l.o.,. .w.o.r.l.d.!i


‣ Echo user input: ```sii```si`k`ci`@|

‣ (I x) = x


‣ (K x y) = x


‣ (S f g x) = (f x (g x))


