Programming Abstractions

Week 4-1: Combinators and combinatory logic

Stephen Checkoway



An early 20th century crisis iIn mathematics

Russell's Paradox

Define S to be the set of all sets that are not elements of themselves

» S={x|x&x}

Is S an element of S?
» Assume so: S € S = S & S by the definition of S, a contradiction
» Assumenot: S € § =—> § € S by the definition of S, another contradiction!

This led to a hunt for a non-set-theoretic foundation for mathematics
> Combinatory logic (Moses Schonfinkel and rediscovered by Haskell Curry)
> Lambda calculous (Alonzo Church and others)

- This forms the basis for functional programming!



Combinatory term
One of three things

A variable (from an infinite list of possible variables)
> |'ll use lowercase, upright letters: e.g., f, g, h, X, vy, z

A combinator (a function that operates on functions)
> One of the three primitive functions
- ldentity: (I x) = x
- Constant: (Kx y) = x
- Substitution: (S g x) = (f x (9 x))
> A new combinator C = E where E is a combinatory term, e.g.,
- J = (S KK)
- B=(S (KS) K)

(E1 E2) An application of a combinatory term E1 to term E>
> Application is left-associative so (E1 E2 Ez E4) is (E1 E2) E3) E4)



The primitive combinators

The identity combinator (I x) = x
> Given any combinatory term x, it returns x

The constant combinator (K x y) = x

> |.e., (KX) y) =x which you can think of as (K x) returns a function that given
any argument y returns x

The substitution combinator (S f g x) = (f X (g X))

> You can think of S as taking two functions f and g and some term x. f is
applied to x which returns a function and that function is applied to the result
of (g x)

> But really, f, g, and x are all just combinatory terms



What is the result of applying the constant combinator
in the combinatory term (K z 1)

(f x (g x))

A. The variable z
B. The combinator |

C. The combinatory term (z |)

D. It's an error because | takes an argument but none is provided

E. None of the above




What is the result of applying the substitution
combinator in the combinatory term (S (f X) h y z)

(f x (g x))

A. The variable f

B. The combinator S

C. The combinatory term ((f x) y (h y) 2)

D. The combinatory term (f x (h x) y 2)

E. It's an error because S takes 3 arguments but is given four




Expressing S, K, and | in Racket

(define (I X)
X)

(define (K X)
(A (y) %))

(define (S f)
(A (9)
(A (%)
((f x) (g9 x)))))



Using the combinators (in Racket)

((K 25) 37) ; returns 25

» ((curry-* xX) y) 1s just (* x V)
(define (curry-* Xx)
(A (Y)
(* XY)))

(define (square Xx)
(((5 curry-») I) X))

As combinators we get (S * I X) = (* X (I X)) = (* X x)



Equivalence between Scheme and combinatory logic

We can represent combinators in Scheme as procedures with no free variables
(l.e., every variable used in the body of the procedure is a parameter)

There are no As in combinatory logic so no way to make new functions

However, combinatory logic does have a way to get the same effect as A
expressions

> We won't cover this, but we can convert every expression in A calculus into
combinatory logic

> A calculus is Turing-complete (it can perform any computation) so
combinatory logic Is as well!



Example of a new combinator
L = (S K)

> (I x) =x
> (KXy) =X
> (STgXx)=(fx(gX)
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Example of a new combinator

L = (S K)
Apply the rules to the left-most combinator in each step, |> (I x) = x
starting with (L X y) » (KXY)=X
» (Sfgx)=(fx(gXx
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=(SKXxYy) [Constant]
= (Ky (XV)) [Substitution]

=Y [Constant]
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Example: Diagonalizing combinator
W=(SSL)

Apply the rules to the left-most combinator in each step,
starting with (W f x)

(WEx)=(SSL)Tx) [Definition of W]
= (S S LTfx) [Associativity]
= (S f (L f) x) [Substitution]
= (f x ((L f) x)) [Substitution]
= (f x (L f x)) |[Associativity]
= (f X x) [Applying L]



Example: Composition combinator

B =(S (KS) K)
Bfgx) =(1(S(KS)K)Tfgx) [Definition of B] > (I X) =X
=(S(KS) Kfgx) [Associativity] > (KXYy)=X
= ((KS) f (Kf) g x) [Substitution] » (Sfgx) =(fx(gx))
=(KSf(Kf)gx) [Associativity]
= (S (Kf) g x) [Constant]
= (K f) X (g X)) [Substitution]
= (K f x (g X)) |[Associativity]
= (

f (g x)) [Constant]



Work out what J = (S K K) does in (J x)

Apply the rules of the left most combinator in each step, |> (I X) = x
starting with (J x) > (KXYy)=X
> (STgx) =(x(gX)



| IS unnecessary

Since (S K K x) is always X, (S K K) and | are functionally
equivalent

We can replace | in any combinatory term with (S K K)

Since we can model all computation using S, K, and | and | can be built from S
and K, S and K are sufficient for any computation!

Unlambda is a programming language built out of S, K, function application, and
functions for printing and reading a character

» Hello world! in Unlambda: =~ H.e.l.l.o.,. .w.o.r.l.d.li

> Echo user input: “sii sikci @)



